TODAYS AGENDA

- 09:15 09:20 Introduction to the SCALE-UP project: | *Holger Gerdes, Ecologic Institute*
- 09:20 09:30 Biomass streams in the 6 SCALE-UP regions | Frans Feil, BTG Biomass Technlogy Group BV
- **09:30 10:10** Developing a local biomass supply system | *Magnus Matisons, Biofuel Region*
- 10:10 10:20 Short break
- **10:20 11:20** Break-out rooms | Moderated in your language by a facilitator in your region.
- 11:20 10:30 Short break
- 11:30 12:00 Main room Feedback on the key outcomes and questions from the breakout rooms

Conclusions and presentation of the next session Short survey: give your feedback on the training!

INTRODUCTION TO SCALE-UP

Holger Gerdes & Zoritza Kiresiewa Ecologic Institute

7 September 2023

community-driven bioeconomy development

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101060264.

THE SCALE-UP PROJECT

A three-year EU-funded project, aiming to achieve:

- Increased capacity of regional multi-actor partnerships to accelerate the development of marketable bio-based products and services.
- Strengthened collaboration between primary producers, SMEs, clusters, social actors, and policymakers.
- Improved knowledge about nutrient recycling potentials in regional bioeconomies.
- High level of awareness and understanding of the bioeconomy and its impacts on local communities.
- Promotion of a sustainable, inclusive and just regional bioeconomy.

SCALE-UP'S FOCAL REGIONS

Source: SCALE-UP project

THE SCALE-UP TRAINING PROGRAMME

A community-driven, needsbased training programme for bioeconomy development in European rural areas

SAVE THE DATES!

EFFICIENT REGIONAL INFRASTRUCTURE & BIOMASS LOGISTICS	INTEGRATING PRIMARY PRODUCERS INTO BIO-BASED VALUE CHAINS				
WS4 September & October 2023 07.09.23 / 26.09.23 /19.10.23	WS2 November & December 2023 09.11.23 / 21.11.23 / 07.12.23				
DIGITALISATION IN THE BIOECONOMY	IMPROVED NUTRIENT RECYCLING				
WS3 January & February 2024 16.01.24 / 06.02.24 / 27.02.24	WS1 March & April 2024 12.03.24 / 04.04.24 / 23.04.24				
RURAL BIOECONOMIES	BIO-BASED SYSTEMS				
WS5	WS6				
May & June 2024 14.05.24 / 04.06.24 / 25.06.24	September & October 2024 05.09.24 / 26.09.24 /17.10.24				
STRATEGIES TO ADDRESS SOCIAL, ECOLOGICAL AND ECONOMIC TRADE-OFFS IN REGIONAL BIOECONOMY DEVELOPMENT					
WS7					
October, November & December 2024					
31.10.24 / 21.11.24 / 12.12.24					

WORK STREAM 1

Efficient regional biomass logistics and infrastructure

Challenges and best practices

SESSION #1

7 September 2023 from 9 am to 12 pm CEST Introduction to challenges of biomass logistics: Getting into the topic

SESSION #2

26 September 2023 from 9 am to 12 pm CEST End-users' challenges in the local value chain: Further building on the insights

SESSION #3

19 October 2023 from 9 am to 12 pm CEST Sustainability and policy drivers for a regional bioeconomy: How to move forward

BIOMASS STREAMS OF THE 6 SCALE-UP REGIONS

Frans Feil, Marisa Groenestege

BTG Biomass Technlogy Group BV

Training session on *efficient regional biomass* logistics and infrastructure

community-driven bioeconomy development

SCALEUP

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101060264.

BIOMASS STREAMS

- For each region:
 - What are the **biomass** streams?
 - Are they main **product** of **by-product**?
 - Are they produced on the land or at the factory?
 - What are the desired **end products** for this project?
- Final remarks

French Atlantic Arc

- Feedstock:
 - Plant fibres:
 - Hemp, straw, miscanthus (main product = primary biomass, produced on the land)
- End use:
 - Biobased insulation panels for buildings

Mazovia, Poland

- Feedstock:
 - Residues from apple production:
 - Apple prunings (from the land => primary residue)
 - Apple pomace (from the factory => secondary residue)
- End use
 - Energy/ materials
 - Innovative food products

Upper Austria

- Feedstock:
 - By-products:
 - Beer & Bakery production (grains)
 - Fruit production (primary and secondary residues)
 - Sunflower oil (secondary products = from the factory)
- End products:
 - Innovative food products
 - Cosmetics (from sunflower oil press cakes)

Strumica, Macedonia

- Feedstock
 - Agricultural residues (from the field = primary residues)
 - By-products of food processing factories
 - (= secondary residues)
- End products
 - Compost

Andalusia, Spain

- Feedstock
 - Residues from olive production:
 - Prunings (primary residue)
 - pomace and wastewater (secondary residues)
- End products:
 - Biochar
 - Biomaterials

North Sweden

- Feedstock:
 - Logging residues: needles and tops (in the forest: => primary residue)
 - By-products from mills: bark, sawdust, shavings...
 (= secondary residues)
- Endproducts
 - Natural rubber from bark
 - Chemicals from needles

Final remarks

- Feedstock availability depends on in short -:
 - Land use, harvesting and competition with other crops (for primary biomass, such as hemp)
 - Harvesting and collection process in the field (for primary residues, such as prunings)
 - Processing system (for secondary residues, such as pomace).
 - Value of product and buying power (= economic availability).
- Environmental constraints
 - Quality of the soil (among other constraints) and possibilities to recycle nutrients (especially for crops).

THANK YOU FOR YOUR ATTENTION

Frans Feil, BTG Biomass Technology Group

feil@btgworld.com

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101060264.

Location, Date

EFFICIENT BIOMASS LOGISTICS AND INFRASTRUCTURE

CHALLENGES AND BEST PRACTISES

Magnus Matisons BioFuel Region 7 September 2023

community-driven bioeconomy development

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.

BioEquivation For the bioeconomy and sustainable transports

BioFuel Region is a member owned non-profit organization working for a well-developed bioeconomy and a low carbon vehicle fleet by initiating, coordinating, and collaborating on project.

Area: 7*Belgium (221 800 km²) 70 % Forest land

The aim is to further develop the region!

ACTIONS LEADING THE WAY TOWARDS A SUSTAINABLE, CIRCULAR BIOECONOMY <u>EU BIOECONOMY STRATEGY</u>

1. strengthen and scale-up the bio-based sectors, unlock investments and markets

- 2. deploy local bioeconomies rapidly across Europe;
- 3. understand the ecological boundaries of the bioeconomy.

DIFFERENT BIOMASS CHALLENGES

Dedicated bio crops

Optimized logistics not considering main product

• Forestry or agricultural by products

Low biomass density over large geographical areas, Seasonality

• Bioindustries by products

Dependency on main products

Byproduct logistics is secondary to main product

COMMON CHALLENGES

The costs of harvesting, transporting, storing and handling biomass are prime determinants of overall biorefining costs.

Thus, it is vitally important to develop local biomass supply systems that for long time can efficiently supply end-users with sufficient raw material that meets their specific quality and seasonal demands.

20 YEARS HISTORY OF CROSS BORDER COOPERATION development HIGHLY APPLIED RESEARCH ON BIOMASS LOGISTICS

2003 - 2004 Bioenergy from Forest 2005 - 2007 Bioenergy from Forest 2 2009 - 2012 Forest Power 2012 - 2014 Forest Refine 2.5 M € 2016 – 2019- Bio Hub 2.3 M € 2021 – 2022 Added Value 0.6 M €

FEEDSTOCK COSTS IS OFTEN NEGLECTED

People often make unrealistic optimistic assumptions about things like feedstock costs

- Raw material supply cost often represents >50% of the overall cost for refining
- To be competitive more focus should be put on the feedstock instead of on the technology to process it

DIFFERNT MATURITY OF THE VALUE CHAINS In Sweden forest biomass has provided the basis for significant industrial activitiy for more than 150 years

- Forest biomass value chain very well developed
- All infrastructure available (roads, machinery, know how)
- Add value in an existing value chain

community-driver

bioeconomy development

25

Annual Forest Biomass potential in Sweden Actual use is often much smaller than gross potential

SAWMILL BY PRODUCTS ARE PRODUCED AS A RESULT OF SAWMILL OPERATION **ALL THE YEAR AROUND** SCALE

Biomass availability is not seasonality, but demand is

Sawdust - 15% of the wood
Today used for pellet production and combustion
Woodchips - 25 % of the wood Today used by the pulp and paper industry
Bark - 10% of the wood - Today used for combustion

28 SAWMIILS IN NORTHEN SWEDEN Location, owner, county, and production of sawn wood for the year 2019

2021- Large increase in price for sawn goods – increased output

Location	Owner	Owner County	
Korpilombolo	Jutos Timber	Norrbotten	60 000
Tärendö	Krekula & Lauri	Norrbotten	52 000
Piteå, Munksund	SCA Wood	Norrbotten	420 000
Piteå, Lövholmen	Stenvalls trä	Norrbotten	140 000
Sikfors	Stenvalls trä	Norrbotten	140 000
Seskarö	Stenvalls trä	Norrbotten	0
Luleå, Örarna	Stenvalls trä	Norrbotten	65 000
Glommersträsk	Glommers Timber	Norrbotten	50 000
Älvsbyn	Älvsbyhus	Norrbotten	40 000
Brattby	Brattbysågverk	Västerbotten	50 000
Rundvik	SCA Wood	Västerbotten	315 000
Malå	Setra Trävaror AB	Västerbotten	210 000
Vännäs	NK Lundströms	Västerbotten	65 000
Sävar	Norra Skog	Västerbotten	256 000
Kåge	Norra Skog	Västerbotten	263 000
Agnäs	Norra Skog	Västerbotten	18 000
Bygdsiljum	Martinsson/Holmen	Västerbotten	430 000
Kroksjön, Skellefteå	Martinsson/Holmen	Västerbotten	117 000
Hissmofors	Norra Skog	Jämtland	120 000
Gällö	SCA Wood/Persson Invest	Jämtland	360 000
Svenstavik	Rödins Trä AB	Jämtland	78 000
Bollsta	SCA Wood	Västernorrland	550 000
Tunadal	SCA Wood	Västernorrland	550 000
Ullånger	MST Sågverk Ullånger AB	Västernorrland	35 000
Örnsköldsvik	Högland	Västernorrland	50 000
Anudsjö, Bredbyn	Högland	Västernorrland	190 000
Fränsta	Callans Trä AB	Västernorrland	85 000
Edsele	Edsele Såg AB	Västernorrland	28 000

Adventinegidaningsr 18	solietal
Volves medigouslas. Th	TIMA
Adven Verne A5.	Bollotabruk
Adven Verne A5.	Brieckie, Chiyoon
Adven Verne Ab.	runacioarien
Advent Varies all	1 Augusta
Advent Variation all	hits iber
Adven Verne #5	Removie
Arvidelaure premi all	Arvidelaut
eadens energi All	auden.
6TEA Energi A5	Berg
Gallivare Crengi Að	Gällvare-Malmberge
Hepenende Viermeverk AS	Haparanda Residual
Hândrand stiergi & Mijô As	Himdiand
Jok Knickki v Srneverk AB	20kk/mokk
Jernstkreft AS	Krokom
Jentsreft AS	Are
dentitati alla	adjust and
Contract Contract of Call	Kines (
Kinger Kraft 48	Ultranet .
Luissi Emergi AA	Luini
Luied strengt An	nlined
Nevel All	strainfore
Pajala Värmeverk AS	Pajala
PiteEnergi Að	Norfjärden
Pitetnergi Att	Pibeš
Pitetnergi Alt	R00VR
Pitetnergi Að	Sjulniki
Skelleftee Kreft Að	Boliden
Skellefbeil Kreft All	Durnië
skeleftes suft 11	Burblink
Included load 15	avera a
Skeleter Kett AS	10ml
skelende kert As	1 Marchan
skeletel unit an	Lucknein
Shallafferi Konft 28	Underer
Skalleften Kraft 45	Mala
Skelleften Kreft AB	Notalô
skeleftel out as	Pobertifors
skelefteå stuft un	skelefteå
Skeleftei Kreft Að	Storuman
Skellefteé Kreft Að	Unviken-Skelleftehe
skelefteå stuft 44	vindein
skelefteå stalt us	Anäoet
Sundoval Energi Að	Kylopleity
Sundoval Energi Að	Metfors
Sundoval Energi Að	Sundoval
surdousi energi All	Tunadai
Unies sherp All	ajuntom.
Umes chergi Ab	riometers
United Chergi Ad	Limal.
vara viena apiding An	and a
Long Franci 45	Prints
Anna Franzi All	Acres
Övik Energi Að	Silota
the second second	and by n
CVB DOME AR	
Ovis Bregi AB Ovis Bregi AB	Hutun
CVA Inegi Ali CVA Inegi Ali ČVA Inegi Ali	Huturi Molden
Cvis Energi Δ8 Övik Energi Δ8 Övik Energi Αδ Övik Energi Αδ	Huturn Moliden Proceosings

.

.

1.0

-

-28

53

57

2.0

62 48

				Deaduction row tonner
		Sawmills		Production raw tonnes
		Autos Timber	sorpilomàcia	
	1	Krekule & Leuri	Tarendó	 0 - 10000
	2	NCA Wood	Pibeli, Municund	10000 - 20000
	5	Sanvelote	Piteš, Lövitoimen	
		Mervalizzá	skfart	20000 - 40000
	5	Sanvelstri	Sepharth	40000 - 60000
		Mervalit 15	wieś, drama	
	5	Giommers Timber	Glommerstrilisk.	60000 - 80000
		Evebyhas	Zivitkyn	•
	.9	Brattbyteligvenk	6nettby	-
	10	SCI Wood	Rundvik	80000 - 100000
	11	Sette Treveror AD	Mana.	-
	12	NK Lundströms	Venneo	
		hard heat	10-10	100000 - 130000
	1.0	Norm shop	nage .	-
	14	kia dimon biniman	Australian	
	17	Martington/Holmen	erokulón, skeleftel	
	1.0	Norma Shore	Historichen	
	1.0	SCA Wood/Person Invest	0810	
	20	Ródina Tré Að	Sverotavík	
	21	sca wood	soluta	
	22	SCA Wood	Tunadal	
	23	war algeet uitiger as	utilinger	
	24	högland	Ömsköldsvik	
	23	wägland	Anudijā, aredbyn	
	26	Cellens Tré AS	Prietota	
	21	ndasie nig an	ndoele	
		Pulp and paper industries		
	20	Sillerud Koroniko	Production raw	tonnes
	28	smuffe kappa		
	50	SCA Munksund	 0 - 20000 	
	-	SCE COBO'S	20000 - 3000	0
	24	WHEE SOUTH		
		SCA Ortoikan	A 10000 - 4000	0
in a	-	Mondi pvsik	30000 * 4000	~
	.56	Aditye Sirie		
	Francis	mation row to an	())	
	Consu	mption raw tonne	85	
	• 0	- 1000		100 k
	• 10	000 - 6000		
	6	000 - 15000		50 km
	0 1	5000 - 50000		$\left(\left(\right) \right)$
	0 50	0000 - 100000		XXX .
	01	00000 - 150000		×

100 km

SCALE^{UP} community-driven bioeconomy development

RAW MATERIAL SUPPLY TO BIOREFINERIES

- Coastal Synergies and competition with existing biomass users.
 Proximity to harbour Import /Export
- Inland Close to raw material Raw material supply area full circle

Figure 1. Example of biorefinery locations and supply areas. A: Biorefiney on the coast with local supply, B: Inland biorefinery with local supply, C: Biorefinery on the coast with supply from an inland terminal. Supply area sizes are indicated for two different levels of feedstock requirements. Marginal cost curves – Important tool for design of biorefinery Biorefinery investments are often characterized by economics of scale Raw material supply cost have negative economies of scale

BIOMASS POTENTIAL IS OFTEN DYNAMIC

- Innovations can be a driver for new products with higher value
- More effective and profitable biomass processing
- End user can pay more
- Higer price gives incentives for primary producers to produce and sell more
- Improved biomass logistics can make more biomass economical available
- Dependency on business for main product Risk/profit sharing

The growing forest stock in EU is increasing

SCALE UP community-driven bioeconomy development

- Incresed demand for biomass results in more biomass – not less
- It gives primary producers incentives to improve forest management to produce more

THE COST FOR HARVEST, TRANSPORT, STORING AND HANDLING OF THE BIOMARS Stevelopment IS OF PRIME IMPORTANCE WHEN CALCULATING THE OVERALL COST FOR BIOREFINING

Bulk density of biomass is a major factor in determining the cost and logistics requirements of handling and moving biomass from farm to biorefinery.

Transport Costs(general example)Lorry200 kmRail-way600 km

20/ton

Ocean ship 10 000 km

20/ton

20/ton

A specially designed rail solution with 26 cars with 3x60 m3 containers providing 4700 m3 loose per train set.

35

LOADING/UNLOADING IS OFTEN COSTLY

Dependency between different machinery often causes waiting time

 Logistical hot systems are difficult to plan

POSSIBLE SOLUTIONS SELF LOADING/ UNLOADING

INFORMATION FLOW BETWEEN DIFFERENT ACTORS

- Biomass logistics is often understood as a flow of biomass from the field to the end users
- Logistics is also a flow of information between different actors in the value chain
- Poor information flow can have a negative impact on feed stock cost and biomass quality
- Multi actor partnership

Different actors are doing different things during different time of the year

POOR ATTITUDE – POOR LOGISTICS

Don't use the word waste!

- It has a negative impact on the work actors involved in the value chain are doing
- It suggests that the biomass resource is for free
- To be fully involved Primary producers also wants some income
- If you introduce a price you can set quality requirements of the biomass resource

QUALITY CONTROL OF BIOMASS IS DETERMINED BY END USERS DEMANDS

- Moisture content Effects transport cost and storability
- Calorific value If used as a fuel
- Contaminations –Content of specific compounds (eg sulphur alakali)
- Ash content Process disturbing
- Particle size distribution Feeding of the biomass and processing
- Freshness Some chemicals are volatile and can be lost during handling and storage. Chipping/Crushing accelerates volatility

PRODUCING MULTIPLE PRODUCTS

- By producing multiple products, a biorefinery can take advantage of the differences in the biomass feed stocks and maximize the value from the biomass feed stocks
- Big incomes can come from small volumes of high value chemicals
- What can you extract from your feedstock ?

Best sources of total polyphenolic concentrations in a spruce tree A case study; potential quantities of polyphenolics

Needles, total phenolics 58 mg GAE/g (average 3 batches) 37 kg in a tree

addec

Total phenolics in needles: **2 kg** (based on mg GAE/g)

Bark, total phenolics 35 mg GAE/g (average 3 batches) 29 kg in a tree Total phenolics in bark: **1 kg** (based on mg GAE/g)

Branches, total phenolics 7,5 mg GAE/g (average 3) 69 kg in a tree

Total phenolics in branches: 0,5 kg (based mg GAE/g)

EXTRACTIVES ARE QUICKLY LOST DURING STORAGE

Extractive content analyzed after 0,2,4 and 24 weeks of storage

High temperatures, sunlight and chipping/crushing will increase losses

Conclusion – Biomass must be delivered quickly to industry for refining

KNOWLEDGE GAP - MISMATCH BETWEEN END USERS EQUALITY DEMAND AND WHAT IS AVAILABLE

Biomass properties

- Outspread (expensive to harvest and transport) seasonality
- Wet and bulky
- Complex and varied quality
- High ash and alkali
- Varied particle size distribution

End users' quality demand

- Cheap and a warehous
- Dry and densified
- Well defined quality
- Low ash and alkali
- Even particle size (sawdust)

SOLUTION BIOHUB

 A business centre, BioHub, which delivers the right assortment to the right place at the right price

BREAKOUT ROOMS – DISCUSSIONS

- Regional biomass resources: volumes and spatial distribution, seasonality
- Upgrading and storage of biomass-BioHub
- Multi actor partnership

SCALE^{UP} community-driven bioeconomy development

What are the main challenges you have identified in your region and how can they be addressed ?

Other topics discussed

Can the SCALE UP platform and multi actor partnerships contribute to solutions ?

SESSION #2

26 September 2023 from 9 am to 12 pm CEST End-users' challenges in the local value chain: Further building on the insights

SESSION #3

19 October 2023 from 9 am to 12 pm CEST Sustainability and policy drivers for a regional bioeconomy: How to move forward

SCALE-UP TRAINING SESSION 1 – SURVEY QR CODE

<u>Thank you for your attention!</u> magnus.matisons@biofuelregion.se