

Advanced technologies: Drones, Space technologies, AI & Machine Learning, Advanced Robotics

Viktoria Motsch Scale Up, 06.02.2024

Smart Farming

Challenges and Opportunities

- Increased Global Food Demand
- Limited Resources

- Environmental Challenges
- Climate Change
- Manual Labor
- Reporting Obligations

- Production with fewer ressources
- Optimization & Precision Agriculture
- Increased Sustainability
- Adaptation
- Efficiency & Data-Driven Decisions
- Financial Incentives

Digital technologies as a solution

Space Technologies in Agriculture

- Global Navigation Satellite Systems (GNSS)
- Satellite Imaging
 - > Sentinel System
 - > Multispectral Information
 - > Crop Monitoring

Space Technologies in Agriculture

- Global Navigation Satellite Systems (GNSS)
- Satellite Imaging
 - > Sentinel System
 - > Multispectral Information
 - > Crop Monitoring
- Weather Monitoring
- Communication

Drone Technology

also known as Unmanned Aerial Vehicles (UAVs)

Crop monitoring with increased resolution

Image of a field in Lower Austria, red indicates a higher NDVI, blue a lower NDVI

Drone Technology

also known as Unmanned Aerial Vehicles (UAVs)

- Crop monitoring with increased resolution
- Fawn detection / Animal search
- Ichneumonidae (wasps)

Drone Technology

also known as Unmanned Aerial Vehicles (UAVs)

- Crop monitoring with increased resolution
- Fawn detection / Animal search
- Ichneumonidae (wasps)
- Collection of GPS data from fields
- Weed detection
- Cargo drone (up to 30 kg) for reseeding
- Legal framework for fertilization and chemical crop protection from the air

Systems in Use

Systems in Use

Systems in Use

Field Robotics in Action

Source: Small Robot Company

Source: Deepfield Robotics

Field Robotics in Action

Robotics in Agriculture

Agri-robotics encompasses various applications aimed at automating tasks, improving precision, and enhancing overall productivity.

- Robotic Dairy Farming
- Weeding and Crop Monitoring Robots
- Robotic Harvesting Systems
- Robotic Soil Sampling
- Swarm Robotics

The adoption of robotics in agriculture offers the potential for **increased efficiency**, reduced labor costs, and sustainable farming practices.

AI & Machine Learning

Let's put the "smart" in smart farming!

- Artificial intelligence (AI) is proving to be a decisive factor in overcoming current and future challenges.
- By analyzing collected data, recognizing patterns and combining them with robotics, self-learning systems can make targeted interventions.
- Primarily used in the field of chemical and mechanical crop protection, which reduces costs and minimizes environmental impact.
- Further, determining the optimum times for sowing, crop protection and harvesting.

AI & Machine Learning

- Artificial intelligence (AI) refers to the ability of computers to perform tasks that traditionally require human intelligence, such as decision making, speech recognition and problem solving.
- Within this field, machine learning (ML) is a method by which computers learn and adapt through data analysis and without explicit programming.
- Deep learning (DL), a subset of machine learning, deepens this approach by using artificial neural networks with many layers that allow complex patterns in large amounts of data to be identified and interpreted.

AI & Machine Learning

Applications in Agriculture

- Livestock Monitoring
- Irrigation
- Yield Mapping
- Protection against diseases
- Field robotics
- Post harvest handling

Conclusion Smart Farming

- At the forefront of Agriculture 4.0, where technology intersects with traditional practices for unprecedented efficiency, sustainability, and productivity.
- Further advancements in Artificial Intelligence, Internet of Things, robotics, and data analytics expected.
- Integration of precision agriculture techniques and innovative technologies
 addresses contemporary challenges in the agricultural sector and aligns with
 global efforts toward sustainability and resilience.
- Potential to optimize resource usage, minimize environmental impact, and contribute to food security → smart farming is a strategic pathway to a more sustainable future for agriculture.

How to find our data set?

https:doi.org/10.5281/zenodo.7457983

Contact information

Viktoria Motsch, PhD Professor for agricultural engineering

FH Oberösterreich
University of Applied Sciences Upper Austria
School of Engineering
Stelzhamerstraße 23 | 4600 Wels/Austria

Mobile +43 664 80484 44015 Tel. +43 5 0804 44015

E-Mail: viktoria.motsch@fh-wels.at

Web: http://www.fh-ooe.at/agr

